Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Cardiovasc Res ; 2023 May 30.
Article in English | MEDLINE | ID: covidwho-20241446

ABSTRACT

Immunothrombosis - immune-mediated activation of coagulation - is protective against pathogens, but excessive immunothrombosis can result in pathological thrombosis and multiorgan damage, as in severe Coronavirus Disease 2019 (COVID-19). The NACHT-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome produces major proinflammatory cytokines of the interleukin (IL)-1 family, IL-1ß and IL-18, and induces pyroptotic cell death. Activation of the NLRP3 inflammasome pathway also promotes immunothrombotic programs including release of neutrophil extracellular traps and tissue factor by leukocytes, and prothrombotic responses by platelets and the vascular endothelium. NLRP3 inflammasome activation occurs in patients with COVID-19 pneumonia. In preclinical models, NLRP3 inflammasome pathway blockade restrains COVID-19-like hyperinflammation and pathology. Anakinra, recombinant human IL-1 receptor antagonist, showed safety and efficacy, and is approved for the treatment of hypoxemic COVID-19 patients with early signs of hyperinflammation. The non-selective NLRP3 inhibitor colchicine reduced hospitalization and death in a subgroup of COVID-19 outpatients, but is not approved for the treatment of COVID-19. Additional COVID-19 trials testing NLRP3 inflammasome pathway blockers are inconclusive or ongoing. We herein outline the contribution of immunothrombosis to COVID-19-associated coagulopathy, and review preclinical and clinical evidence suggesting an engagement of the NLRP3 inflammasome pathway in the immunothrombotic pathogenesis of COVID-19. We also summarize current efforts to target the NLRP3 inflammasome pathway in COVID-19, and discuss challenges, unmet gaps and the therapeutic potential that inflammasome-targeted strategies may provide for inflammation-driven thrombotic disorders including COVID-19.

2.
Circ Heart Fail ; 14(3): e007767, 2021 03.
Article in English | MEDLINE | ID: covidwho-2319497

ABSTRACT

BACKGROUND: The expense of clinical trials mandates new strategies to efficiently generate evidence and test novel therapies. In this context, we designed a decentralized, patient-centered randomized clinical trial leveraging mobile technologies, rather than in-person site visits, to test the efficacy of 12 weeks of canagliflozin for the treatment of heart failure, regardless of ejection fraction or diabetes status, on the reduction of heart failure symptoms. METHODS: One thousand nine hundred patients will be enrolled with a medical record-confirmed diagnosis of heart failure, stratified by reduced (≤40%) or preserved (>40%) ejection fraction and randomized 1:1 to 100 mg daily of canagliflozin or matching placebo. The primary outcome will be the 12-week change in the total symptom score of the Kansas City Cardiomyopathy Questionnaire. Secondary outcomes will be daily step count and other scales of the Kansas City Cardiomyopathy Questionnaire. RESULTS: The trial is currently enrolling, even in the era of the coronavirus disease 2019 (COVID-19) pandemic. CONCLUSIONS: CHIEF-HF (Canagliflozin: Impact on Health Status, Quality of Life and Functional Status in Heart Failure) is deploying a novel model of conducting a decentralized, patient-centered, randomized clinical trial for a new indication for canagliflozin to improve the symptoms of patients with heart failure. It can model a new method for more cost-effectively testing the efficacy of treatments using mobile technologies with patient-reported outcomes as the primary clinical end point of the trial. Registration: URL: https://www.clinicaltrials.gov; Unique identifier: NCT04252287.


Subject(s)
Canagliflozin/therapeutic use , Heart Failure/drug therapy , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Telemedicine , Actigraphy/instrumentation , Canagliflozin/adverse effects , Double-Blind Method , Exercise Tolerance/drug effects , Fitness Trackers , Heart Failure/diagnosis , Heart Failure/physiopathology , Humans , Mobile Applications , Quality of Life , Randomized Controlled Trials as Topic , Recovery of Function , Sodium-Glucose Transporter 2 Inhibitors/adverse effects , Stroke Volume/drug effects , Telemedicine/instrumentation , Time Factors , Treatment Outcome , United States , Ventricular Function, Left/drug effects
4.
J Cardiovasc Pharmacol ; 82(1): 23-31, 2023 Jul 01.
Article in English | MEDLINE | ID: covidwho-2290463

ABSTRACT

ABSTRACT: Postural orthostatic tachycardia syndrome (POTS) is a clinical syndrome of inappropriate increase in heart rate on standing that has been recently also associated with Coronavirus Disease 2019 (COVID-19) as part of the postacute sequelae of COVID-19 (PASC) or long-COVID. We herein aimed to systematically review reported cases of POTS after COVID-19 and determine the characteristics of the subjects, the diagnostic approach used, and the treatment strategies. We searched the literature according to the following criteria: (1) diagnosis of POTS according to standard definition; (2) timely association with a probable or definite diagnosis of COVID-19; and (3) a description of the individual subject(s). We identified 21 reports meeting criteria between March 2020 and September 2022, including 68 subjects (51 females and 17 males, 3:1 ratio) with a mean age of 34 ± 12 years, with reports deriving from the United States, Norway, Sweden, Israel, Ireland, United Kingdom, Singapore, and Japan. Most cases had mild COVID-19 symptoms. The most common POTS symptoms were palpitations, chest pain, lightheadedness, and debilitating fatigue. The diagnosis was established by means of head-up tilt table or active stand test. Nonpharmacologic treatments (fluids, sodium intake, and compression stockings) were virtually always used, but largely ineffective. Subjects received different treatments, the most common being beta-adrenergic blockers (ie, propranolol), mineral corticosteroids (ie, fludrocortisone), midodrine, and ivabradine. Symptoms tended to improve over time, but most patients remained symptomatic for several months. In conclusion, POTS after COVID-19 is a clinical condition affecting young individuals, and disproportionately young women, occurring as part of PASC-long-COVID, often debilitating, which can be easily diagnosed with a thorough clinical assessment and measuring changes in orthostatic heart rate and blood pressure. POTS after COVID-19 seems to be poorly responsive to nonpharmacological treatments but with symptoms improving with pharmacological interventions. Given the limited data available, additional research is urgently needed with respect to its epidemiology, pathophysiology, and treatments.


Subject(s)
COVID-19 , Midodrine , Postural Orthostatic Tachycardia Syndrome , Male , Humans , Female , Young Adult , Adult , Middle Aged , Postural Orthostatic Tachycardia Syndrome/diagnosis , Postural Orthostatic Tachycardia Syndrome/epidemiology , Postural Orthostatic Tachycardia Syndrome/therapy , Post-Acute COVID-19 Syndrome , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/therapy , Adrenergic beta-Antagonists/therapeutic use , Midodrine/therapeutic use , Heart Rate
5.
Journal of the American College of Cardiology (JACC) ; 81:2086-2086, 2023.
Article in English | CINAHL | ID: covidwho-2247758
6.
Minerva Med ; 2021 Jul 16.
Article in English | MEDLINE | ID: covidwho-2233373

ABSTRACT

The ongoing coronavirus disease 2019 (COVID-19) pandemic has placed tremendous strain on health systems throughout the world. This has led to many clinical trials being launched in order to try to find ways to combat the disease. The unprecedented nature of the pandemic has been reflected in the methods used in some of these trials. Placebo-controlled randomized trials are considered the gold-standard, however, there are inherent challenges in the use of placebo, especially during COVID-19. We herein review the pros, cons, challenges and limitations of using placebo in clinical trials investigating treatments for COVID-19. We also discuss the importance of viewing research critically, examining the potential impact of placebo use or lack thereof, on blinding and possible biases. This becomes important as we assess the responses to the pandemic in preparation for a future pandemic. Although placebo-controlled clinical trials are the gold standard for clinical research, they may not be practically or ethically feasible during a pandemic. Choices accomplished to design many COVID-19 trials might reflect the unprecedently trying environment in which they were made. However, critical evaluation of the methodology and practice of scientific research remains a crucial part of the scientific process. Even when conducted as randomized double-blinded studies, residual biases may exist and interfere with the study conduct and interpretation of the data. A critical review of all data, remains essential to thoroughly assess the impact of a research study.

8.
Front Med (Lausanne) ; 9: 929408, 2022.
Article in English | MEDLINE | ID: covidwho-2115318

ABSTRACT

Objective: Coronavirus disease 2019 (COVID-19) is a systemic disease induced by SARS-CoV-2 causing myocardial injury. To date, there are few data on the correlation between mid-regional proAdrenomedullin (MR-proADM) and myocardial injury. The aim of this study was to evaluate whether the association of myocardial injury and elevated mid-regional proAdrenomedullin values could predict mortality of SARS-CoV-2 patients, to offer the best management to COVID-19 patients. Materials and methods: All patients hospitalized for SARS-CoV-2 infection at the COVID-19 Center of the Campus Bio-Medico of Rome University were included between October 2020 and March 2021 and were retrospectively analyzed. Myocardial injury was defined as rising and/or fall of cardiac hs Troponin I values with at least one value above the 99th percentile of the upper reference limit (≥15.6 ng/L in women and ≥34.2 ng/L in men). The primary outcome was 30-day mortality. Secondary outcomes were the comparison of MR-proADM, CRP, ferritin, and PCT as diagnostic and prognostic biomarkers of myocardial injury. Additionally, we analyzed the development of ARDS, the need for ICU transfer, and length of stay (LOS). Results: A total of 161 patients were included in this study. Of these, 58 (36.0%) presented myocardial injury at admission. An MR-proADM value ≥ 1.19 nmol/L was defined as the optimal cut-off to identify patients with myocardial injury (sensitivity 81.0% and specificity 73.5%). A total of 121 patients (75.2%) developed ARDS, which was significantly more frequent among patients with myocardial injury (86.2 vs. 68.9%, p = 0.015). The overall 30-day mortality was 21%. Patients with myocardial injury presented significantly higher mortality compared to those without the same (46.6 vs. 6.8%, p < 0.001). When dividing the entire study population into four groups, based on the presence of myocardial injury and MR-proADM values, those patients with both myocardial injury and MR-proADM ≥ 1.19 nmol/L presented the highest mortality (53.2%, p < 0.001). The combination of myocardial injury and MR-proADM values ≥ 1.19 nmol/L was an independent predictor of death (OR = 7.82, 95% CI = 2.87-21.30; p < 0.001). Conclusion: The study is focused on the correlation between myocardial injury and MR-proADM. Myocardial injury induced by SARS-CoV-2 is strongly associated with high MR-proADM values and mortality.

9.
EBioMedicine ; 85: 104299, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2061075

ABSTRACT

A hyperinflammatory response during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection crucially worsens clinical evolution of coronavirus disease 2019 (COVID-19). The interaction between SARS-CoV-2 and angiotensin-converting enzyme 2 (ACE2) triggers the activation of the NACHT, leucine-rich repeat, and pyrin domain-containing protein 3 (NLRP3) inflammasome. Enhanced inflammasome activity has been associated with increased disease severity and poor prognosis. Evidence suggests that inflammasome activation and interleukin-1ß (IL-1ß) release aggravate pulmonary injury and induce hypercoagulability, favoring progression to respiratory failure and widespread thrombosis eventually leading to multiorgan failure and death. Observational studies with the IL-1 blockers anakinra and canakinumab provided promising results. In the SAVE-MORE trial, early treatment with anakinra significantly shortened hospital stay and improved survival in patients with moderate-to-severe COVID-19. In this review, we summarize current evidence supporting the pathogenetic role of the NLRP3 inflammasome and IL-1ß in COVID-19, and discuss clinical trials testing IL-1 inhibition in COVID-19.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Inflammasomes , Humans , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , COVID-19/complications , Interleukin 1 Receptor Antagonist Protein , SARS-CoV-2 , Interleukin-1beta/metabolism
10.
J Transl Med ; 20(1): 270, 2022 06 15.
Article in English | MEDLINE | ID: covidwho-1902395

ABSTRACT

BACKGROUND: Heart failure (HF) is a global leading cause of mortality despite implementation of guideline directed therapy which warrants a need for novel treatment strategies. Proof-of-concept clinical trials of anakinra, a recombinant human Interleukin-1 (IL-1) receptor antagonist, have shown promising results in patients with HF. METHOD: We designed a single center, randomized, placebo controlled, double-blind phase II randomized clinical trial. One hundred and two adult patients hospitalized within 2 weeks of discharge due to acute decompensated HF with reduced ejection fraction (HFrEF) and systemic inflammation (high sensitivity of C-reactive protein > 2 mg/L) will be randomized in 2:1 ratio to receive anakinra or placebo for 24 weeks. The primary objective is to determine the effect of anakinra on peak oxygen consumption (VO2) measured at cardiopulmonary exercise testing (CPX) after 24 weeks of treatment, with placebo-corrected changes in peak VO2 at CPX after 24 weeks (or longest available follow up). Secondary exploratory endpoints will assess the effects of anakinra on additional CPX parameters, structural and functional echocardiographic data, noninvasive hemodynamic, quality of life questionnaires, biomarkers, and HF outcomes. DISCUSSION: The current trial will assess the effects of IL-1 blockade with anakinra for 24 weeks on cardiorespiratory fitness in patients with recent hospitalization due to acute decompensated HFrEF. TRIAL REGISTRATION: The trial was registered prospectively with ClinicalTrials.gov on Jan 8, 2019, identifier NCT03797001.


Subject(s)
Heart Failure , Adult , Double-Blind Method , Humans , Interleukin 1 Receptor Antagonist Protein/pharmacology , Interleukin 1 Receptor Antagonist Protein/therapeutic use , Interleukin-1 , Quality of Life , Stroke Volume/physiology , Treatment Outcome
11.
Expert Opin Pharmacother ; 23(6): 681-691, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1769033

ABSTRACT

INTRODUCTION: Aspirin or non-steroidal anti-inflammatory drugs (NSAIDs) and colchicine are first-line treatments for acute and recurrent pericarditis. Drugs blocking the NACHT, leucine-rich repeat, and pyrin domain-containing protein 3 (NLRP3) inflammasome/interleukin-1ß (IL-1ß) axis are beneficial in patients with multiple recurrences. AREAS COVERED: In this review, the role of the NLRP3 inflammasome/IL-1ß axis in the pathophysiology of pericarditis is discussed. Updates about novel therapies targeting IL-1 for recurrent pericarditis (RP) and practical considerations for their use are provided. EXPERT OPINION: IL-1 inhibitors have been increasingly studied for RP in recent years. NLRP3 inflammasome is a key mediator in the pathophysiology of RP. IL-1ß, its main product, can sustain its own production and feeds local and systemic inflammation. Randomized clinical trials testing anakinra (a recombinant form of the IL-1 receptor antagonist blocking IL-1α and IL-1ß) and rilonacept (an IL-1α and IL-1ß trap) have shown that IL-1 blockade reduces recurrences. These trials also helped in phenotyping patients with RP. Patients with multiple recurrences and signs of pericardial and/or systemic inflammation might benefit from IL-1 blockers in order to interrupt cyclic flares of auto-inflammation. Given this evidence, guidelines should consider incorporating IL-1 blockers.


Subject(s)
Pericarditis , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Colchicine/therapeutic use , Humans , Inflammasomes/metabolism , Inflammasomes/therapeutic use , Inflammation/drug therapy , Pericarditis/diagnosis , Pericarditis/drug therapy
13.
Inflamm Res ; 71(3): 293-307, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1729272

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is capable of inducing the activation of NACHT, leucine-rich repeat, and pyrin domain-containing protein 3 (NLRP3) inflammasome, a macromolecular structure sensing the danger and amplifying the inflammatory response. The main product processed by NLRP3 inflammasome is interleukin (IL)-1ß, responsible for the downstream production of IL-6, which has been recognized as an important mediator in coronavirus disease 2019 (COVID-19). Since colchicine is an anti-inflammatory drug with the ability to block NLRP3 inflammasome oligomerization, this may prevent the release of active IL-1ß and block the detrimental effects of downstream cytokines, i.e. IL-6. To date, few randomized clinical trials and many observational studies with colchicine have been conducted, showing interesting signals. As colchicine is a nonspecific inhibitor of the NLRP3 inflammasome, compounds specifically blocking this molecule might provide increased advantages in reducing the inflammatory burden and its related clinical manifestations. This may occur through a selective blockade of different steps preceding NLRP3 inflammasome oligomerization as well as through a reduced release of the main cytokines (IL-1ß and IL-18). Since most evidence is based on observational studies, definitive conclusion cannot be drawn and additional studies are needed to confirm preliminary results and further dissect how colchicine and other NLRP3 inhibitors reduce the inflammatory burden and evaluate the timing and duration of treatment.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , COVID-19 Drug Treatment , Colchicine/therapeutic use , Inflammasomes/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , SARS-CoV-2 , Animals , COVID-19/immunology , Humans
14.
Nat Med ; 28(4): 809-813, 2022 04.
Article in English | MEDLINE | ID: covidwho-1713203

ABSTRACT

Large traditional clinical trials suggest that sodium-glucose co-transporter 2 inhibitors improve symptoms in patients with heart failure and reduced ejection fraction (HFrEF) and in patients with heart failure and preserved ejection fraction (HFpEF). In the midst of the Coronavirus Disease 2019 pandemic, we sought to confirm these benefits in a new type of trial that was patient centered and conducted in a completely remote fashion. In the CHIEF-HF trial ( NCT04252287 ), 476 participants with HF, regardless of EF or diabetes status, were randomized to 100 mg of canagliflozin or placebo. Enrollment was stopped early due to shifting sponsor priorities, without unblinding. The primary outcome was change in the Kansas City Cardiomyopathy Questionnaire Total Symptom Score (KCCQ TSS) at 12 weeks. The 12-week change in KCCQ TSS was 4.3 points (95% confidence interval, 0.8-7.8; P = 0.016) higher with canagliflozin than with placebo, meeting the primary endpoint. Similar effects were observed in participants with HFpEF and in those with HFrEF and in participants with and without diabetes, demonstrating that canagliflozin significantly improves symptom burden in HF, regardless of EF or diabetes status. This randomized, double-blind trial, conducted without in-person interactions between doctor and patient, can serve as a model for future all-virtual clinical trials.


Subject(s)
COVID-19 , Heart Failure , Sodium-Glucose Transporter 2 Inhibitors , Ventricular Dysfunction, Left , Canagliflozin/pharmacology , Canagliflozin/therapeutic use , Heart Failure/diagnosis , Heart Failure/drug therapy , Humans , Patient-Centered Care , Quality of Life , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Stroke Volume
15.
Pharmacol Ther ; 236: 108053, 2022 08.
Article in English | MEDLINE | ID: covidwho-1559421

ABSTRACT

The NACHT, leucine-rich repeat (LRR), and pyrin domain (PYD)-containing protein 3 (NLRP3) inflammasome is an intracellular sensing protein complex that plays a major role in innate immunity. Following tissue injury, activation of the NLRP3 inflammasome results in cytokine production, primarily interleukin(IL)-1ß and IL-18, and, eventually, inflammatory cell death - pyroptosis. While a balanced inflammatory response favors damage resolution and tissue healing, excessive NLRP3 activation causes detrimental effects. A key involvement of the NLRP3 inflammasome has been reported across a wide range of cardiovascular diseases (CVDs). Several pharmacological agents selectively targeting the NLRP3 inflammasome system have been developed and tested in animals and early phase human studies with overall promising results. While the NLRP3 inhibitors are in clinical development, multiple randomized trials have demonstrated the safety and efficacy of IL-1 blockade in atherothrombosis, heart failure and recurrent pericarditis. Furthermore, the non-selective NLRP3 inhibitor colchicine has been recently shown to significantly reduce cardiovascular events in patients with chronic coronary disease. In this review, we will outline the mechanisms driving NLRP3 assembly and activation, and discuss the pathogenetic role of the NLRP3 inflammasome in CVDs, providing an overview of the current and future therapeutic approaches targeting the NLRP3 inflammasome.


Subject(s)
Cardiovascular Diseases , Inflammasomes , Animals , Cardiovascular Diseases/drug therapy , Humans , Immunity, Innate , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
16.
Int J Cardiol ; 340: 119-121, 2021 10 01.
Article in English | MEDLINE | ID: covidwho-1433284

ABSTRACT

Immune-mediated myocardial injury following Severe Acute Respiratory Syndrome Coronavirys-2 (SARS-CoV2) infection has been described in adults and children. Cases of myocarditis following immunization for SARS-CoV2 have recently been documented, mostly associated with mild severity and spontaneous recovery. We herein report two cases of fulminant myocarditis following BNT162b2 mRNA Covid-19 vaccination associated with systemic hyperinflammatory syndrome and refractory shock requiring support with veno-arterial extracorporeal membrane oxygenation.


Subject(s)
COVID-19 , Myocarditis , Adult , BNT162 Vaccine , COVID-19 Vaccines , Child , Humans , Myocarditis/diagnosis , RNA, Messenger , RNA, Viral , SARS-CoV-2 , Systemic Inflammatory Response Syndrome , Vaccination/adverse effects
17.
JAMA ; 326(3): 230-239, 2021 07 20.
Article in English | MEDLINE | ID: covidwho-1338164

ABSTRACT

Importance: Effective treatments for patients with severe COVID-19 are needed. Objective: To evaluate the efficacy of canakinumab, an anti-interleukin-1ß antibody, in patients hospitalized with severe COVID-19. Design, Setting, and Participants: This randomized, double-blind, placebo-controlled phase 3 trial was conducted at 39 hospitals in Europe and the United States. A total of 454 hospitalized patients with COVID-19 pneumonia, hypoxia (not requiring invasive mechanical ventilation [IMV]), and systemic hyperinflammation defined by increased blood concentrations of C-reactive protein or ferritin were enrolled between April 30 and August 17, 2020, with the last assessment of the primary end point on September 22, 2020. Intervention: Patients were randomly assigned 1:1 to receive a single intravenous infusion of canakinumab (450 mg for body weight of 40-<60 kg, 600 mg for 60-80 kg, and 750 mg for >80 kg; n = 227) or placebo (n = 227). Main Outcomes and Measures: The primary outcome was survival without IMV from day 3 to day 29. Secondary outcomes were COVID-19-related mortality, measurements of biomarkers of systemic hyperinflammation, and safety evaluations. Results: Among 454 patients who were randomized (median age, 59 years; 187 women [41.2%]), 417 (91.9%) completed day 29 of the trial. Between days 3 and 29, 198 of 223 patients (88.8%) survived without requiring IMV in the canakinumab group and 191 of 223 (85.7%) in the placebo group, with a rate difference of 3.1% (95% CI, -3.1% to 9.3%) and an odds ratio of 1.39 (95% CI, 0.76 to 2.54; P = .29). COVID-19-related mortality occurred in 11 of 223 patients (4.9%) in the canakinumab group vs 16 of 222 (7.2%) in the placebo group, with a rate difference of -2.3% (95% CI, -6.7% to 2.2%) and an odds ratio of 0.67 (95% CI, 0.30 to 1.50). Serious adverse events were observed in 36 of 225 patients (16%) treated with canakinumab vs 46 of 223 (20.6%) who received placebo. Conclusions and Relevance: Among patients hospitalized with severe COVID-19, treatment with canakinumab, compared with placebo, did not significantly increase the likelihood of survival without IMV at day 29. Trial Registration: ClinicalTrials.gov Identifier: NCT04362813.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , COVID-19 Drug Treatment , Interleukin-1beta/antagonists & inhibitors , Respiration, Artificial/statistics & numerical data , Aged , Antibodies, Monoclonal, Humanized/adverse effects , C-Reactive Protein/analysis , COVID-19/mortality , COVID-19/therapy , Combined Modality Therapy , Double-Blind Method , Female , Ferritins/blood , Fibrin Fibrinogen Degradation Products/analysis , Hospitalization , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Survival Rate , Treatment Outcome
18.
J Clin Transl Sci ; 5(1): e136, 2021.
Article in English | MEDLINE | ID: covidwho-1324370

ABSTRACT

INTRODUCTION: Controlled clinical trials (CCTs) have traditionally been limited to urban academic clinical centers. Implementation of CCTs in rural setting is challenged by lack of resources, the inexperience of patient care team members in CCT conductance and workflow interruption, and global inexperience with remote data monitoring. METHODS: We report our experience during the coronavirus disease 2019 (COVID-19) pandemic in activating through remote monitoring a multicenter clinical trial (the Study of Efficacy and Safety of Canakinumab Treatment for cytokine release syndrome (CRS) in Participants with COVID-19-induced Pneumonia [CAN-COVID] trial, ClinicalTrials.gov Identifier: NCT04362813) at a rural satellite hospital, the VCU Health Community Memorial Hospital (VCU-CMH) in South Hill, VA, that is part of the larger VCU Health network, with the lead institution being VCU Health Medical College of Virginia Hospital (VCU-MCV), Richmond, VA. We used the local resources at the facility and remote guidance and oversight from the VCU-MCV resources using a closed-loop communication network. Investigational pharmacy, pathology, and nursing were essential to operate the work in coordination with the lead institution. RESULTS: Fifty-one patients with COVID-19 were enrolled from May to August 2020, 35 (69%) at VCU-MCV, and 16 (31%) at VCU-CMH. Among the patients enrolled at VCU-CMH, 37.5% were female, 62.5% Black, and had a median age of 60 (interquartile range 56-68) years. CONCLUSION: Local decentralization of this trial in our experience gave rural patients access to a novel treatment and also accelerated enrollment and more diverse participants' representative of the target population.

19.
Lancet Rheumatol ; 3(6): e410-e418, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1307286

ABSTRACT

BACKGROUND: In patients with COVID-19, granulocyte-macrophage colony stimulating factor (GM-CSF) might be a mediator of the hyperactive inflammatory response associated with respiratory failure and death. We aimed to evaluate whether mavrilimumab, a monoclonal antibody to the GM-CSF receptor, would improve outcomes in patients with COVID-19 pneumonia and systemic hyperinflammation. METHODS: This investigator-initiated, multicentre, double-blind, randomised trial was done at seven hospitals in the USA. Inclusion required hospitalisation, COVID-19 pneumonia, hypoxaemia, and a C-reactive protein concentration of more than 5 mg/dL. Patients were excluded if they required mechanical ventilation. Patients were randomly assigned (1:1) centrally, with stratification by hospital site, to receive mavrilimumab 6 mg/kg as a single intravenous infusion, or placebo. Participants and all clinical and research personnel were masked to treatment assignment. The primary endpoint was the proportion of patients alive and off supplemental oxygen therapy at day 14. The primary outcome and safety were analysed in the intention-to-treat population. This trial is registered at ClinicalTrials.gov, NCT04399980, NCT04463004, and NCT04492514. FINDINGS: Between May 28 and Sept 15, 2020, 40 patients were enrolled and randomly assigned to mavrilimumab (n=21) or placebo (n=19). A trial of 60 patients was planned, but given slow enrolment, the study was stopped early to inform the natural history and potential treatment effect. At day 14, 12 (57%) patients in the mavrilimumab group were alive and off supplemental oxygen therapy compared with nine (47%) patients in the placebo group (odds ratio 1·48 [95% CI 0·43-5·16]; p=0·76). There were no treatment-related deaths, and adverse events were similar between groups. INTERPRETATION: There was no significant difference in the proportion of patients alive and off oxygen therapy at day 14, although benefit or harm of mavrilimumab therapy in this patient population remains possible given the wide confidence intervals, and larger trials should be completed. FUNDING: Kiniksa Pharmaceuticals.

20.
Prog Cardiovasc Dis ; 67: 35-39, 2021.
Article in English | MEDLINE | ID: covidwho-1219678

ABSTRACT

The outbreak of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has presented a global public health emergency. Although predominantly a pandemic of acute respiratory disease, corona virus infectious disease-19 (COVID-19) results in multi-organ damage that impairs cardiopulmonary (CP) function and reduces cardiorespiratory fitness. Superimposed on the CP consequences of COVID-19 is a marked reduction in physical activity that exacerbates CP disease (CPD) risk. CP exercise testing (CPET) is routinely used in clinical practice to diagnose CPD and assess prognosis; assess cardiovascular safety for rehabilitation; and delineate the physiological contributors to exercise intolerance and exertional fatigue. As such, CPET plays an important role in clinical assessments of convalescent COVID-19 patients as well as research aimed at understanding the long-term health effects of SARS-CoV-2 infection. However, due to the ventilatory expired gas analysis involved with CPET, the procedure is considered an aerosol generating procedure. Therefore, extra precautions should be taken by health care providers and exercise physiologists performing these tests. This paper provides recommendations for CPET testing during the COVID-19 pandemic. These recommendations include indications for CPET; pre-screening assessments; precautions required for testing; and suggested decontamination protocols. These safety recommendations are aimed at preventing SARS-CoV-2 transmission during CPET.


Subject(s)
COVID-19 , Exercise Test , COVID-19/immunology , Exercise Test/methods , Exercise Test/standards , Humans , Practice Guidelines as Topic , Sterilization/methods
SELECTION OF CITATIONS
SEARCH DETAIL